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Geometrical Interpretation of
fractional integrals

m The non-existence of a geometrical or physical interpretation
of the fractional derivatives or integrals was acknowledged in
the first world conference on Fractional Calculus and
Applications held in 1974.

F Ben Adda suggested in 1997 a geometrical interpretation
using the idea of a contact of the a th order. But his
interpretation did not contain any “pictures”.

m Igor Podlubny in 2001 discovered an interesting geometric
interpretation of fractional integrals based on the geometrical
interpretation of the Stieltjes integral discoverd by G L bullock
in 1988. In this talk we present Podlubny's geometric
interpretation of the fractional integral.
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Geometrical interpretation of Stieltjes integral

Let g(x) be a monotonically increasing function and let f(x) be an
arbitrary function. We consider the geometrical interpretation of
the Stieltjes integral

L " () da ().

m Choose three mutually perpendicular axes : g-axis, x-axis,
f-axis.

m Consider the graph of g(x), for x € [a, b], in the (g.x)-plane.
Call it the g(x)-curve.

m Form a fence along the g(x)-curve by erecting a line segment
of height f(x) at the point (x, g(x)) for every x € [a, b].

m Find the shadow of this fence in the (g, f)-plane.

m Area of the shadow is the value of the Stieltjes integral

J? F(x) dg(x).




7/31/17

Shadew ol Fonce i (x) - plane.
Stucow of Fence in (1) - plave:

In he next few frames we present the visualizations of the
fractional integral

oD{(f(1))
when
f(t) =t +0.5sin(t)

for the following values of ¢ :

g=-025 -05 -1, -25

Geometrical interpretation of fractional integral

m For g < 0 we have

1A
anf(t)_ﬁ/a e

u We write

1 1 1
&) = 5 [E Tx= t)q]

m We have the Stieltjes integral

D26(0) = [ F(e)d (o).

m This can be interpreted as the area of the shadow of a fence.

025 (t + 0.5sin(

Shadow of Fence in (g.f) - plane
: Asea bounded by K1) and t-axis

oh ol i)
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oD %3(t + 0.5sin(t)) oD 1(t + 0.55sin(t))

Shadow ol Fence in (g.f) - plane Asea dod by K1) and t-ds
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oD 25(t + 0.5sin(t))

Fractional differential equations

Area bounded by 1) and t-axis

YOy = F(, (1), (1), ..., v (1)), a<i<b

(0<o, <0, <...<0,,<0,, n-l<a<n)

v (@)=0, k=0,1,....n-1




7/31/17

o Differential equations involving fractional derivatives.

o Example: Bagley-Torvik equation of oscillatory processes with
fractional damping:

d2
Y (0 +aD; Py (8) + by (1) = £(2)

o Both ODEs and PDEs.

o Linear and non-linear.

o Existence and uniqueness of solutions established.
@ Analytical solutions are difficult to evaluate.

o Dedicated, elegant numerical methods exist.

Applications:

o In spite of its long history, fractional calculus was not considered
eligible for any applications.

o This was due to its high complexity and lack of physical and
geometric interpretation.

o Application of fractional calculus to real-world problems is only four
decades old.

o Applications can be broadly categorized into:

© Modeling of Systems

@ Fractional-order Control

Application Example

Investigation of a real process governed by fractional order
differential equation:

DLy() =f(t.y(t), t>a

where

D¢, = Caputo differential operator of order a with starting point a.

Investigation of a real process governed by fractional order
differential equation:

Doy(t) =f(t.y(1). t>a
where

D, = Caputo differential operator of order o with starting point a.

Frequent obstacle
State of system can only be observed at time t = b > a.
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Fractional Maxwell model for viscoelastic material:
DSyo(t) = 77 %a(t) + E - Diye(t)

@ Task: Find shear stress o(t) for t > 0.

Fractional Maxwell model for viscoelastic material:
Diyo(t) = 770 (t) + E - De(t) (1)

@ Task: Find shear stress o(t) for t > 0.
@ Measurement:

o(b) = 0" with some b > 0 (2)

Fractional Maxwell model for viscoelastic material:

Digo(t) = 77 %0 (t) + E - Dige(t)

@ Task: Find shear stress o(t) for t > 0.
@ Measurement:

o(b) = 0" with some b > 0

@ Known data:
o shear strain ¢(t)
o relaxation time
e ordera < (0.1)
e shear modulus E

Fractional Maxwell model for viscoelastic material:
Dioo(t) =7 %o(t) + E - Dipe(t) (1)

@ Task: Find shear stress o(t) for t > 0.
@ Measurement:

o(b) = o* withsome b > 0 (2)

@ Approach:
@ solve (1) subject to (2) on [0, b] (terminal value problem)
e compute initial value o(0) from this solution
e construct initial value problem from (1) and initial condition
o if desired, solve initial value problem on [0, T] with T > b
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Task: Find solution to fractional order terminal value problem

Diy(t) = f(t,y(D)
yb) =y

for t € [a. b].

Inthistalk: 0 < o < 1
(generalization to o > 1 requires additional terminal conditions)

Existence and Uniqueness:

General assumptions on right-hand side of differential equation:
@ continuity
@ boundedness
@ Lipschitz condition w. r. t. second variable

@ Uniqueness of continuous solution to terminal value

problem.

@ Existence of continuous solution if interval [a, b] is
sufficiently small.

The graphs of two solutions to the same differential equation
subject to different initial or terminal conditions never meet or
cross each other.

p impossible ;
under our assumptions

(Di. & Ford 2012)

Integral Equation Formulation:

Terminal value problem can be rewritten as Fredholm integral
equation

L1
0=y + s / G(t.9)f(s. y(s)) ds
with
G(t.s) = {7(b7 sz”*‘ . fors>t,
(t—s)* " —(b—s)*' fors<t
(Di. 2010)
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Shooting Methods:

Fundamental approach:
@ Guess initial value y(a)

@ Solve fractional differential equation (numerically) with this
initial value
@ Compare solution y(b) with required terminal value y*:
e if |[y(b) — y*| < e then accept y as approximate solution to
terminal value problem,
o if y(b) > y* then replace guess for initial value y(a) by
smaller number and go back to step 2,
o if y(b) < y* then replace guess for initial value y(a) by
larger number and go back to step 2.

UNIVERSITI PUTRA MALAYSIA

Questions:
@ Good initial guess for y(a)?

@ Algorithm for numerical solution of initial value problem?

@ Step size?

@ Strategy for finding improved value for y(a)?

¥} UNIVERSITI PUTRA MALAYSIA

Questions:
@ Good initial guess for y(a)?
Use terminal value y*(unless additional information available)
@ Algorithm for numerical solution of initial value problem?
Use Adams-Bashforth-Moulton scheme
(Di., Ford & Freed 2002ff.; Ford, Morgado & Rebelo 2011ff.)
@ Step size?
Depends on required accuracy of final result
and on quality of starting value

@ Strategy for finding improved value for y(a)?
Bisection method (Ford, Morgado & Rebelo 2014)
or Newton iteration

Step size selection strategy:

@ Error of fractional initial value problem solver = €' + €\:
o €' = error due to incorrectly chosen initial value
o &N = error introduced by numerical approximation scheme
@ Early iterations:
e approximation of correct initial value is poor
e is large
no need to have very small eN
coarse discretization of interval suffices
reduction of computation cost
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Step size selection strategy:

@ Error of fractional initial value problem solver = e+ N

e ¢ = error due to incorrectly chosen initial value

o N = error introduced by numerical approximation scheme
@ Later iterations:

e approximation of correct initial value is good

o € is small

o €N should be small as well

o fine discretization of interval is required

@ accurate solution can be achieved

Example problem:

D%y(t) =T(2+ o)t + % (y(t) _w— t1+a)

Exact solution: y(t) = '+ + w

Parameters:
e a=7/10
o w=-3

@ b =12 (rather long interval)

Specific step size selection strategy:
@ Define number K of iterations of shooting method
@ Define minimal step size h (for last iteration)
@ Use step size hy, = hK/min mth iteration
Computational results:

— classical algorithm
1.e:03 — new algori

1.e-04

maximal error

de06; 500 1000 1500 2000
number of subintervals

Specific step size selection strategy:
@ Define number K of iterations of shooting method
@ Define minimal step size h (for last iteration)
@ Use step size hyp = hK/min mth iteration
Computational results:

— classical algorithm
1003 — new algorithm

q
3
S

[ms]

— classical algorithm
— new algorithm

NN
g &
8 8

maximal error
run time

500 1000 1500 2000 0 ~ 500 1000 1500 2000
number of subintervals

number of subintervals
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Modeling of

Diffusion:

o Normal, Fickian diffusion = flow of particles from high concentration
to low concentration = Concentration is given by Gaussian
distribution

o Asymptotical mean-squared displacement is a linear function of time,
(3(8) ~ ¢
o Model is given by diffusion equation

96(x, 1)

ot Ox?

92¢(x, t)

Some processes are an exception to this.

Example: Photocopy machine and Laser printer. Movement of holes
and electrons in the semiconductors inside them is not the normal,
Gaussian diffusion.

It is the Anomalous diffusion.

Asymptotical mean-squared displacement is not a linear function of
time,

(3(t)) ~t%, a#1

« < 1 = Sub-diffusion = Slow movement of particles.

« > 1 = Super-diffusion = Fast movement of particles.

Fractional diffusion equation model is
P(x,t) D Pp(x, t)
Y a2

ot

Anomalous Diffusion: Examples

o Sub-diffusion:

© Transport of holes and electrons inside the amorphous semiconductors
under the electric field.

@ Movement of contaminants in groundwater.

© Spread of pollutants from environmental accidents.

Q Diffusion of proteins across cell membranes.

o Super-diffusion:

@ Motion of large molecules and metal clusters across crystalline surfaces.
@ Flight of seabirds (Albatrosses).

© Movement of spider monkeys.

© Spread of pollutants in the sea.

© Movement of particles inside a rapidly rotating annular tank.

Applications of Fracti

@ Viscoelastic materials.

Polymeric materials.

Acoustic wave propagation in inhomogeneous porous material.

Fluid flow.

Dynamical processes with self-similar structures.

Dynamics of earthquakes.

Optics.

Geology.

Bio-sciences.

Medicine.
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Electrical engineering: element Fractance.

Economics.

Probability and statistics.
o Astrophysics.

Chemical engineering.

Signal processing.

Chaotic dynamics.

o Even fractional-order models of LOVE and EMOTIONS have been
developed!!! And they are claimed to give better representation than
the integer-order ODEs!!!
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New rheological models.

New mathematical models (laws)
of deformation of viscoelastic materials.
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Impact of the process history on its state.

Modelling “memory” of the process.
Fractional derivative ,D,,f(® is used for
modelling the impact of the process history, fi#)

(l.e. the values of f{y) for 1<10)
onits state at time #0.

Hereditary properties of materials, etc.

Dynamical processes in fractals.

Mathematical models of dynamical processes

in fractals (self-similar structures or materials)

lead to FDEs, where the order(s) of the equation(s)
depends on the fractal dimension.

Porous materials, chemical reactions, diffusion,
new types of electrical circuits, physiology,
chaotic processes, econophysics, etc.

10
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Process control. “Fractional-order” physics?
Fractional order dynamical systems iooke's law: F=kx )
as more adequate models of real Newton’s fluid: F=kx' —» F(1)=kx'“ (1)
dynamical objects and processes. Newton's 2™ |aw: F=kx"
Fractional order controllers.
Robust control. %% u

Diffusion-wave equation: —=—
Jat dx”

The beginning of a new stage

The end?
1695 1960s You are here
No! The beginning! } —
static models | dynamical model fractional order

modeling

geometry, differential fractional calculus
algebra and integral
calculus

11
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G.W. Scott Blair (1950):

“We may express our concepts in Newtonian
terms if we find this convenient but, if we do so,
we must realize that we have made a translation
into a language which is foreign to the system
which we are studying.”

S. Westerlund (1991):

“Expressed differently, we may say that
Nature works with fractional time derivatives.”

K. Nishimoto (1989):

“The fractional calculus is
the calculus of the XXI century.”
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Confessions of a Fractional Calculus
Researcher:

“As soon as | see integer-order derivatives
in an equation, | replace them with the
fractional ones. Then | start worrying
about the motivation for the replacement.”
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“We have not succeeded in answering all
our problems. The answers we have found
only serve to raise a whole set of new
questions. In some ways we feel we are as
confused as ever, but we believe we are
confused on a higher level and about more
important things.”
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Thank You

* Questions/comments?

oyt
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